GSK-3β inhibition suppresses instability-induced osteolysis by a dual action on osteoblast and osteoclast differentiation.
نویسندگان
چکیده
Currently, there are no medications available to treat aseptic loosening of orthopedic implants. Using osteoprotegerin fusion protein (OPG-Fc), we previously blocked instability-induced osteoclast differentiation and peri-prosthetic osteolysis. Wnt/β-catenin signaling, which regulates OPG secretion from osteoblasts, also modulates the bone tissue response to mechanical loading. We hypothesized that activating Wnt/β-catenin signaling by inhibiting glycogen synthase kinase-3β (GSK-3β) would reduce instability-induced bone loss through regulation of both osteoblast and osteoclast differentiation. We examined effects of GSK-3β inhibition on regulation of RANKL and OPG in a rat model of mechanical instability-induced peri-implant osteolysis. The rats were treated daily with a GSK-3β inhibitor, AR28 (20 mg/kg bw), for up to 5 days. Bone tissue and blood serum were assessed by qRT-PCR, immunohistochemistry, and ELISA on days 3 and 5, and by micro-CT on day 5. After 3 days of treatment with AR28, mRNA levels of β-catenin, Runx2, Osterix, Col1α1, and ALP were increased leading to higher osteoblast numbers compared to vehicle-treated animals. BMP-2 and Wnt16 mRNA levels were downregulated by mechanical instability and this was rescued by GSK-3β inhibition. Osteoclast numbers were decreased significantly after 3 days of GSK-3β inhibition, which correlated with enhanced OPG mRNA expression. This was accompanied by decreased serum levels of TRAP5b on days 3 and 5. Treatment with AR28 upregulated osteoblast differentiation, while osteoclastogenesis was blunted, leading to increased bone mass by day 5. These data suggest that GSK-3β inactivation suppresses osteolysis through regulating both osteoblast and osteoclast differentiation in a rat model of instability-induced osteolysis.
منابع مشابه
Titanium particle-induced osteogenic inhibition and bone destruction are mediated by the GSK-3β/β-catenin signal pathway
Wear debris-induced osteogenic inhibition and bone destruction are critical in the initiation of peri-prosthetic osteolysis. However, the molecular mechanism underlying this phenomenon is poorly understood. In this study, we analyzed the involvement of the GSK-3β/β-catenin signal pathway, which is important for bone formation in this pathological condition. We established a titanium (Ti) partic...
متن کاملPKCβ Positively Regulates RANKL-Induced Osteoclastogenesis by Inactivating GSK-3β
Protein kinase C (PKC) family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. However, the role of PKC in receptor activator of NF-κB ligand (RANKL) signaling has remained elusive. We now demonstrate that PKCβ acts as a positive regulator which inactivates glycogen synthase kinase-3β (GSK-3β) and promotes NFATc1 induct...
متن کاملGlycogen synthase kinase-3β may contribute to neuroprotective effects of Sargassum oligocystum against amyloid-beta in neuronal SH-SY5Y cells
Glycogen synthase kinase (GSK)-3β mediates amyloid-beta (Aβ) and oxidative stress-induced neurotoxicity in neurodegenerative disorders. Natural products with antioxidant activity, such as Sargassum (S.) oligocystum may modulate GSK-3β enzyme and protect against Aβ-induced neurotoxicity. Therefore, we aimed to assess the neuroprotective effects of a methanolic extract of S. oligocystum against A...
متن کاملDihydroartemisinin prevents breast cancer-induced osteolysis via inhibiting both breast caner cells and osteoclasts
Bone is the most common site of distant relapse in breast cancer, leading to severe complications which dramatically affect the patients' quality of life. It is believed that the crosstalk between metastatic breast cancer cells and osteoclasts is critical for breast cancer-induced osteolysis. In this study, the effects of dihydroartemisinin (DHA) on osteoclast formation, bone resorption, osteob...
متن کاملPurslane suppresses osteoclast differentiation and bone resorbing activity via inhibition of Akt/GSK3β-c-Fos-NFATc1 signaling in vitro and prevents lipopolysaccharide-induced bone loss in vivo.
Purslane (Portulaca oleracea L.) is popular as a potherb in many areas of Europe, Asia, and the Mediterranean region and is widely distributed around the globe. It has a wide range of pharmacological effects, such as antibacterial, anti-aging, anti-inflammatory, and anti-oxidative properties. Although the extract of purslane has numerous beneficial pharmacological effects, its effect on osteocl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cellular physiology
دوره 233 3 شماره
صفحات -
تاریخ انتشار 2018